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The Frictional Resistance and Boundary Layer
of Flat Plates in Non-Newtonian Fluids'

By Paul S. Granville2

\"boundary-layer parameters and frictional resistance formulas for either laminar or
turbulent flow are derived for flat plates in power-law non-Newtonian fluids. The results
for laminar flow are based on the known velocity profiles for pipe flow, whereas those for
turbulent flow are based on the application of similarity laws.

THE possibility of injecting non-Newtonian fluids into worthy in this respect. Dodge and Metzner[l 14 have ap-
the boundary layers of bodies to reduce frictional resist- plied similarity laws to the turbulent flow of power-law
ance raises two questions: What is the frictional resist- non-Newtonian fluids in pipes.
ance oi bodies in non-Newtonian fluids? Or more funda- The so-called power-law fluids are those whose charac-
mentally, what are the characteristics of boundary layers, teristic stress curves can be fitted by straight lines on
laminar and turbulent, of non-Newtonian fluids? log-log plots. In this respect, Newtonian fluids com-

As far as can be ascertained attention has been di- prise a special case of power-law fluids. The studies in
rected mainly to the flow of non-Newtonian fluids in this paper are confined to flat plates in zero pressure
pipes for chemical engineering applications. The work gradient as the simplest of bodies with boundary layers.
of Metzner and his associates has been particularly note- By utilizing the known velocity profiles of the laminar

flow of power-law fluids in pipes, local coefficients of
This work was carried out at the David Taylor Model Basin frictional resistance for flat plates in laminar flow follow.

under the Bureau of Ships Fundamental Hydromechanica Re-
search Program. The similarity laws are applied to the turbulent

2 Physicist, David Taylor Model Basin, Navy Department, boundary layers of power-law fluids on flat plates to ob-
Washington, D. C.

SThe tilde will be used over symbols relating to factors peculiar -
to power-law fluids. I Numbers in brackets designate References at end of paper.

Nomenclature 3

A = slope of logarithmic velocity L = subscript for quantities at junc- U = free-stream velocity
law tion of laminar and transi- Ur - average velocity in pipe

a = factor in equation (29) tional sublayers u - tangential velocity in boundary
B,, B2 = intercepts of logarithmic veloc- In = natural logarithm to base e layer

itv law; see equations (22) log = common logarithm to base 10
aid (23ý 1* = flow-behavior index of power- u. - shear velocity, u, (

C = constant of integration in equa- law fluids, equation (23 z - distance along boundary layer
tion (47) 0 = subscript for limit of overlap- y - normal distance from wall

(C = coefficient of frictional resist- ping of inner and outer laws = nondimensional y for power-
ci2, t = linearization constants in equa- P,, P? = constants in ',)garithmic resist- 2

_ 1
to ance formulas, equations law fluids •* = un /a

tions (60) and (64) V
D = frictional resistance or drag (61) and (66) elocity Proie constant, equa-

D,, D2 = velocity profile constants in R = radius of pipe tion (35)
equations (36) and (38) AD = Reynolds number of pipe B = velocity profile constant, e,4ua-

e - base of natural logarithms tion (37)
F - outer law function, equation RD =- U" 2R/;'. I - boundary-layer thickness

(19) •A. - Reynolds number based on displacement thicknes
= = friction factor for pipes length for power law fluids, q - boundary-layer Reynolds num-
- inner law function, equation 2

_ i ber, q ý u,(2/R)-1&/;,/x
(17) A, __ M- / - momentum thickness

G = subscript for quantities at Re = Reynolds number based on mo- = viscosity of power-law fluidr;
junction of inner and outer mentum thickness for power- see equation (2)
turbulent sublayers 2!- = kinematic viscosity of power-

H - shape parametrr, H = &*/0 law fluids, Re - Ux @/n law fluids, ; ý ý/p
I,, I = integrals of outer law velocity r - radial distance from center of p - density of fluid

profiles, equations (39) and pipe a = local resistance paramete, a
(40) T - subscript for quantities at U/u7

J, - transitional sublayer factor, junction of transitional and r - shearing stress in fluid
equation (27) inner turbulent sublayers ,. - shearing strews at wall
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Fig. 1 Shear curves of time-independent non.Newtonian fluids
Non-Newtonian fluids are:
1 Solutions or melts of polymeric materials of high

molecular weights.
tain the usual boundary-layer parameters of momentum 2 Suspensions of solids in liquids, particularly if the
thickness, displacement thickness, and shape parameter. solid tends to swell, solvate, or otherwise associate with
The overall coefficients of frictional resistance follow in the liquid phase.
terms of a local-resistance parameter. The subsequent "The distinguishing feature of non-Newtonian systems
elimination of this parameter provides the more familiar is seen to be that the colloidal rather than the molecular
logarithmic resistance-type formulas, properties are of significance."

An example is worked out for the frictional resistance
of a flat plate in an aqueous solution of a synthetic poly- Clas¢iaion
mer exhibiting a reduction in resistance for pipe tests in Non-Newtonian fluids may be divided broadly into
the turbulent regime. Here the values of the pertinent three main categories [31:
boundary-layer factors are deduced from the pipe data. 1 Fluids with properties independent of the time or

duration of shear.
Non-Newtonian Fluids 2 Fluids with properties dependent on the time or
Definition duration of shear.

3 Viscoelastic fluids which have some of the charac-
Non-Newtonian fluids [2] are a class of viscous or real teristics of solids, such as elastic recovery from deforma-

fluids for which the shearing stress T is no longer a fixed tions.
ratio to the rate of shear; this fixed ratio is termed the Most engineering studies to date have dealt with the
coefficient of viscosity for- Newtonian fluids. For two- first and simplest category, which will also be the one
dimensional flows the rate of shear is du/dy and then considered in this paper.

/di! The time-independent non-Newtonian fluids may be
= y (1) subdivided into three categories whose characteristic

shear curves are shown in Fig. 1:
where u is the velocity in the direction of the shearing I Bingham plastics which require a finite shearing
stress and y is the distance normal to the direction of the stress to initiate movement. Otherwise, the relationship
shearing stress. Representative curves are shown sche- between shearing stress and shear rate is linear like
matieally in Fig. 1. Newtonian fluids.

As stated by Metzner [3], Newtonian fluids are: (a) 2 Pseudoplastic fluids for which the shear curve is
All gases, and (b) all liquids or solutions of low molecular nonlinear and curves downward. These include the
weight (i.e., nonpolymeric) materials. majority of non-Newtonian fluids.

2



3 Dilatant fluids for which the shear curve is also and shape parameter H -m 0/,
nonlinear but curves upward. 3n + 2
Powe-Law Fluids H - n +- 1 (6)

The power-law fluids are those characterized by linear The solution here for Newtonian fluids n - 1, is
plots in log-log coordinates of the curves of shearing stress H - 2.5 (7)
versus shear rate, or

In contrast, the exact Blasius solution for flat plates
T = (2) [41 which is sufficiently close is

These fluids include pseudoplastic fluids n < 1, dilatant H = 2.61 (8)
fluids n > 1, and Newtonian fluids n = 1, The limiting conditions for n = 0 are a constant veloc-

Term n is the flow-behavior index and ý is usually ity U for
termed the viscosity or consistency index (often sym- 8* 0
holized as K). Here A- is called the power-law fluid via- = >0, 0, - 0, and H = 2
cosity, since for Newtonian fluids n 1 1, I is the ordinary
coefficient of viscosity. However, it should be noted The limiting conditions for n - a are a straight-line
that the dimenqions of A depend on n for non-Newtonian velocity profile
fluids.

The simple analytic statement of power-law fluids u 6 = 1 9 1
lends itself readily to mathematical analysis, as shown = i' •- = and H 3
in this paper. Shearing Stress at Wall

Laminar Boundary Layer The local skin friction or shearing stress at the wall r.
Velocity Profile is given by

In lieu of attempting to solve the equations of motion -. du=M
for the laminar flow of power-law non-Newtonian fluids =, (9)
wherein the difficulties are compounded by the nonlin-
earity of the shearing-stress terms, a simple expedient is where
to assume that the known velocity profiles for pipe flow fdu\ du
[3] hold sufficiently close for the boundary-layer flow on =y) 4y for y = 0
flat plates. When the boundary-layer thickness 0 is
substituted for the pipe radius, the velocity profile be- From velocity profile, equation (3),
comes [(n = % E)]" .(10)

U 1 -1 - (3) or for shearing-stress coefficient,

where it is the velocity in the boundary layer parallel to (n + 1)' U" (-
the plate. ;-- \---- / n (I

U is the free-stream velocity outside the boundary
layer, and y is the distance normal to the plate. Also where P -m s/p will be termed the power-law fluid kine-

matic viscosity.
u = 0 at y = 0 Substituting'e for & from equation (5) yields

u= U at y-. (-+a + 1) ' .1 (12)
Typical velocity profiles are shown in Fig. 2. pUL(2n+1)(3n + We-

For displacement thickness where RP is the momentum-thickness Reynolds number
o I- u ) dfor power-law fluids,

"-•f ( - ) dy, 0 *U

S2n + 1 (4) For Newtonian fluids n f 1, equation (12) becomes
and momentum thickness T, 0.267 (13)

a f / u13)

J (- 1 -- , In contrast, the exact Blasius solution [4] is

9 n(n + 1) T. 0.220
6 (2n-.+ 1)(3n + 2) (5) - --- (14)

3
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Fig. 3 Typical inner law velocity profiles (based on data of refeerence [11 )

Consequently equation (12) will be arbitrarily altered u,(2/n) -IY
to agree with the exact solution in the Newtonian case, or __P/__

7 0.82 (n + 1)2 2) is the power-law fluid Reynolds number for the inner
pU1 L (2n + 1)(3n +- 2) (Ro ) law, and.F = Al p is the kinematic viscosity for power-law

fluids. Fig. 3 shows characteristic velocity profiles for
Turbulent Boundary Layer power-law fluids. The inner law, equation (17), reduces

to the well-known Newtonian case for n = 1.
Inner Law or Law of the Wall Outer Law or Velocit/.Defect Law

Similarity laws for the turbulent boundary layer of At som ditance frmt w

non-Newtonian fluids on flat plates may be deduced in At some distance away from the wall and for the re-

the same manner as those for pipe flow [1 ]. mainder of the bounday-layer thickness, the velocity

Close to the wall the mean velocity u of the turbulent defect U-u, for Newtonian fluids, has been found experi-

flow of a particular non-Newtonian liquid" parallel to the mentally to be independent of viscosity p and is only a
is considered to depend on the normal distance y function of 7., p, and distance 6 -y. Hence for power-lawwall iscniee odpn ntenra itney fluids the velocity defect may be assumed to be inde-

away from the wall, the shearing stress r. at the wall, plndsnt of itya d n. D e aMetner tl me the

and the density p, the power-law viscosity ý, and the pendent of p and n. Dodge and Metzner on I make the
flowN-hvio indx nof he fuid orvelocity defect independent of pI but dependent on n.

flow-be-havior index n of the fluid, or This is inconsistent with the concept of the outer law as

1- f(y, A., p, j, 1) (16) pointed out to the author by Tulin and Owen Phillips of

By dimensional analysis the variables can be grouped Hydronautics, Inc.

significantly in the following nondimensional ratios: Then

U U - u f(7,,p,y,) (18)u xYn) (17)
U- or by dimensional analysis,

where u, = (7.,/p)/I' is friction or shear velocity, U -_ u (1U)= (19)
SSince the turbulence level may be affected by other rheological U,

effects such - the development of normal strems, it is preferable
to specify the similarity laws only for each particular liquid. The characteristic velocity profile is shown in Fig. 4.

4
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Fig. 4 Outer law velocity profile

Logarithmic Velocity Law U AI In , (4S••-= AIn , + Bi(n) + B3  (24)
Within the region of the boundary layer where the Ur

inner and outer laws overlap, a logarithmic expression where
results as a consequence of the analytic requirements. u'f2/x•-16
This region will also be termed the inner turbulent sub- = U

layer.
Equating the derivative of velocity u with distance Y Also

of the inner and outer laws. equations (17) and (19),
yields j= exp ! (a- Bi-- B3) (25)

S = el u dF (20) Sublo,.rs

Ey- _0I. ~53 6 d(y/8) Various sublayers may be distinguished in the bound-

or ary layer according to the behavior of the velocity profiles,

.f bf\ dF A (21) as indicated schematically in Fig. 5. These are:

ki6 d(y/6) 1 The laminar suhlayer next to the wall wherein the
turbulent fluctuations are effectively dampened out.

Since the left-hand side of equation (21) is only a func- 2 The transitional sublayer wherein the shearing
tion of y* and n and the right-hand side of (21) is only a stresses are affected by both laminar and turbulent con-
function of y/6 they may be equated to a factor A which tributions.
is independent of y*, y/6, and n. From the left-hand 3 The inner oirbulent sublayer wherein the inner and
side of equation (21) there results after integration, outer laws overlap.

U 4 The outer turbulent sublayer where only the outer
- = A In Y* + Bi(n) (22) law prevails.
Ur

and from the right-hand side, Velocity Law for the Laminar Sublayer

U U -The inner law, equation (17), holds here however,
F =- = A In -+ B (23) with no specification as to the exact functional relation-

u, ship. Within the laminar sub-layer for power-law fluids

Factor B, is necessarily a function of n from the integra- /du(2
tion of a partial derivative. Figs. 3 and 4 show the = P (2)_
logarithmic velocity profiles.

Since both the inner and outer laws hold in the over- For the thin laminar sublayer r = r. and with boundary
lapping Iegion, adding equations (22) and (23) results in condition u = 0 at y - 0, there results

5
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Fig. 5 Sublayers within boundary layer / I, - I I

+ + - ± (33~)
i t [ 2, , a n dI-I = ( 2t6)

which also agrees with the inner law. Te - 'I'" a

Velocity Law for the Tranitional Sublayer + a o
The transitional sublayer is hounded by the lamilnar = (1)2 + "A

sublayer and the inner turbulent suhiayer. For the where
Newtonian ease [5], the velocity profile for the transi-
tional suhlayer as originally derived by Sqluire is L*" (itL5

it 2 ,T
- A In (Y* J.,)+ B (27)

1), (Y) (h"' + .A + 11 (36)
where

, =B,- AIn• = *-- (28) 0, i' -J-, - A] -

This relation starts at the outer edge of the laminar sub- A(OL*" - AYL* + A2) (37)
layer YL and merges asymptotically with the logarithmie
velocity law, equation (22). D.,) [(F. + )2 + A"] + Is (38)

It will now he assumed that a similar relationship holds \ a (
also for power-law fluids, with B,. .11, and YL.* being Fd \ a1- /y(39
functions of )4. Fig. 3 shows typical plots of the velocity 1 I j Fd (39)
profiles for the transitional sublayer. •'

Velocity Law for the Outer Turbulent Sub/ayer and

Ior Newtonian fluids llAma li, fitted aparabola to the 12= F,2d (• 2= [-(1c (40)
nonlogarithmic part of the outer law, or , ( 6,,L \4 Ja

- I 2 Since • is given in terms of a in e(juation (25), P*, 0, and" (I= _ - (29) 11 are then functions of a (and n) according to the pre-6) eding relationships.
A similar relation will he assumed for non-Nowtonian
fluids. Frictional Resistance of Flat Plates

This relation is to merge smoothly with the logarithmic
relation equation (23): that is, with equal tangents. Momentum Equation
Hence, if the point of junction is (y'6) G, equating deriva- Considerations of the momentum changes of any
tives results in fluid [4], Newtonian or non-Newtonian, flowing past a

6



flat plate indicate that the y-on Karman momentum D_2[I A (2- 2n) +
eulation is also applicable to non-Newtonian fluids, or - n [
for flat plate in zero pressure gradient + atj 0,2/. $in ,(2/,)-l (48)'

S_ (4.1-- 2 21-n
dx pC! Then

%l hle .r is the streamwise distance from the leading edge. /
Since the frictional resistance or drag 1) for a flat plate Da = 2A [i - 2A +

of unit breadth is ( ( i +

D f o r~d., (42) 2A n D] 0,2 "'

lhe drag coeflhiient +(I - n)a, a'2 /" + 2( ) / + C (49)'

-) The solution of Cf as a function of R. is hence given im-
IPUX plicitly in terms of or by equations (34) and (49).

For Newtonian fluids n = 1, equation (49) reverts to
= 2 x_= 2 R, (43) that given in reference [7].x R•

Evaluation of Constant of Integration

)- The evaluation of the constant of integration C de-
fR 2/-( pends on the starting point of the turbulent flow. If

the turbulent flow is assumed to start at the leading edge,

and it is found that the similarity laws do not hold all the
way but begin only at the point where the overlapping

r'i2/n) -x of the inner and outer laws starts. The point is given
-- = . by Yr = y,, where YT is the limit of the o;verlapping

region nearest the wall and Yo the farthest. Then
Laminar Flow yT*

Suhstituting the expression for shearing-strems coef- =(Y16)G (50)
ficient for laminar flow, equation (15), into the momen-
tum equation (41) and integrating from x = 0 produces and

8[ • -084'" ( l 12+{I/n) -1m/(m+l)

L = 0.824+/"+' (-- + 2) J X2/t/+l (44) ao = A In j 0 + B, + B3 (51)
L(2n + 1)(3n + 2where the subscript 0 refers to the limit of overlap.

The drag coefficient for flat plates in the laminar flow of The evaluation of the constant of integration for the
non-Newtonian fluids from equation (43) becomes case of complete turbulent flow then requires the assump-

tion of the variation of a.2 with Re from the leading edge

C = "2(0.824)"+) (n -+ 1)2+(l/.) In/(O+l) 1 to the limit of overlap. As shown in reference [8] for
L(2n + 1)(3n + 2)i k./(n+t) Newtonian fluids, the curve of a0, versus Re starts at zero

(45) where it is tangent to the laminar line and gradually
reaches the limit of overlap where it becomes tangent to

Turbulent Flow the curve specified by the similarity laws, equation (34).
Since '/a' ' .,/pU2 , the momentum equation (47) A like procedure may be applied to non-Newtonian fluids.

becomes The more realistic procedure is to have the initial por-
tion of the flat plate laminar and, hence, with a constant

R= f aldk. (46) of integration specified for each particular point of
J transition. The constant of integration is evaluated

or integrating by parts from the momentum thickness developed by the laminarflow, or

= ar'
2 

-- 2 f RsAado + C (47) Rol-,,, - t.b (52)

at the point of transition. The value of a at the point
From the statement for Re, equation (34), and j, equa- of transition is determined implicitly from equation (34).
tion (25) in terms of a7, there results after irntegration by There the value of C, the constant of integration, is oh-
parts

A ) + The terms containing 0 in equations (48) and (49) do not holdAsa'da = Ar(2/n)-iDt
( - ... -I fr n - 2. Instead for n - 2, the term is -- , In v for equation
na (48) and 0, (2 In r - 1) for equation (49).

7



Table 1 Velocity Profile Integrals for. Pipe Flow

Region Limits Velocity Law r - v

Latmeur 5 -.S- -. 2 1..
Sublayer Y jYYL 7 YL

Transitional --. (u% -% . _ -A]2
Yalyr L YT -A Ie(y 11) +~ (r J-11) IUt AYr Q 1.) YL''

l Ye. [,U
Turbuleet -Al In' +1? [( A] + A2 QAI
Sublayei V, 77Lu/i jUI

Bocedafy 0ý T t 7(,-D,) + a, 2 2Da.~

Layer

-. 3
IL [)] 2 A(;-.2 A ;L+.f) D-y (F+)+I1

A] _ 8



taiied from this value of a and the ft, corkesponding to If the term involving ((j)I/2 is linearized with respect
RAs,, of the laminar flow. to 1/C'I1 or

Logarithmic Resistance Formulas CI"' = cl +"- (60)

The elimination of parameter a from equation (49)
produces thw more familiar logarithmic resistance formu- then equation [65] becomes
las with (I, a- a function of R,. The procedure starts by -P --

combining equations (43) and (47) to give, after neglect- log RC-- + Q= (61)
ing the contstant of integration, C'2

2' 2f Asada where

S2 (53)= n _ + :) C, (62)
2.3026 A D) T2

The expressions for f Roorda and ft from equations and

(48) and (34) are inserted into equation (53) to give with n A (B + BO]
a, and #I dropped as negligible Q =- _l( + D2) C I2.31126 /2 A

I c (', 2A 2A( 2 -n) 1 + (54)
2r + log 2Dn" (63)

Through reiteration a is replayed by (' within the braek- For n = 1, Newtonian fluids, equation (61) reduces to
ets so that the well-known Ki.rmin-Schoenherr formula.

I (If ((If)1+4A2C + Furthermore, if log C, is linearized with respect to
I - 2A - (55) 1 '('1112 or

a
2 2 it \ / \2/

and by the binomial expansion log C, = c3 + -. (64)

=I ='I[t ((',)112 + (4 - n -) _4. + ... ] then equation (61) becomes

(56) log ft• = •2 + Q.. (65)

and by inversion 
or

S(\yd [I + . -2

\C,/ L C, = (log f/-Q,)2  (6
+ (3n- 4 ) A2 () + (57) wl: --+ 'x T / "where

Now, after substituting for j from equation (25) and 1'2 PI - e4 (67)

ignoring a,, 01, and the constant of integration, CR in and
equation (49) is written in logarithmic form as QI Q1 - c:i (68)

In B, _ B .- + In 1), - 1 In -1 Equation (66) provides an explicit relation between (I,
A A A n a'- and R,.

+InI - (2A + (.58) Pipe Flow
I-D Since some of the frictional res~istance properties of

Substituting the appropriate expre8sions for 1/0", 1/a non-Newtonian liquids may be deduced from pipe flow,
and ar from equations (55), (56) and (57), and expanding it is appropriate to show in detail the application of the
the logarithm as a series results in common logarithms as similarity laws to pipe flow. The friction factor in pipe

_2 ,flow is stated in terms of average velocity, which pro-
log R,"(' 2.3026A \•] vides a measure of flowý-carrying capacity of the pipe.

I JA _D2  n Average Velocity

2.302-6 / ý2 D' () 2.3026 The average velocity of flow in a pipe C' is given by the
n(B1 + Bs) + log 2D• (59) rate of discharge divided by the cross-sectional area or

2.3026A 
2w " urdr

wherein terms of higher order than (C,)"'2 have been f _ Jo (69)
neglected.- wR1

9



Table 2 Velocity P"ofl Inegrals

Region Limits Ve~ocity Law

Laminr 1 < .93

Sublayer u.TYL

Transitional -*<'*.- 1 .. *2 J) -. 2 -. 2 A A2~ -

SulytUr U- 2 (T -YL )-T(vT~) TL

Inner :5 -G -. 2 A-,
Y YG YG U Y U A 2 -. 2

Turbulent in V .I~I+B1 ... ) ~ ~ ~ ~ 'r
Su~blayer 1'G-W a Ur 7 U?) (U)rY

Outer
Turbulent -- a-Fy)

Sublayer G U 2

Whole2
Boundary 0:5-
Layer Y(-3

-,3 j 1,2U A2  8 .2.2 Al1
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Table 2 Velocity Prole integrals

Region Limits Velocity Law f

Laminar 0 -<0. < .. 3

Sublayer -y -YL -L

Transitional < < .o I <. ( 02 2)1 -. 2 -. 2 A - 2 A2
YLY-T - A lnrj/*-J)+B1  -Yr J2)i-

Sublayer UT 2 " ,u,, + 1T( Y- )-T(YT+'r) YT (YL +l)

-. 2 .- ,2<Inner y~yYe U ..ULI( A -2 .
Tu rbuient -*--A In ) +B 22 ) Y
Sublayer Yc Ga +" "U -U(r-i U)

Ous < -- f! [1 2 -

Turbulent S-- . , -u

Sublayer C U G

Whole -2
Boundaly 2L (a, -D

Layer

IrP dY A.

a )c

-3 j2 U A2  ~ 1 2 A/
Y L - (y;+. 1)+ 2 . _. Y )- 7 Y-

10
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Fig. 6. Comparison of coefficient of frictional resistance for flat plates in turbulent flow

where r is the radial distance from the center of the pipe Then from equations (71) and (24) there results for high
and R is the radius of the pipe. values of j

In terms of similarity parameters ( 1))+
2u = ~ l 1f Y - l (70)*• or () =2 Ain,+ B1(n) +B 3 --2D1 +I1)3 (74)

CJ = -U,o d0*- 1 ' - Yd* (70) Y

0f', Ur 0 o or from the definition of ,j another form is

where y is the radial distance from the pipe wall towards
the center and u_, ,j, and .* have the same definitions as (1 /2 2.3026A - 2.3026A

for a flat plate. 7)/ -v/2 l (I)/

Substituting the values of ,\ (n)B 2Du + Af+ log 2+ +B- 2D7+5D
( 2-/2 (75)

fou, Urwhere

from Table 1 and R -_ (2/n)1 2R/C1'n

E n U-Y*d:y*
u, Numerical Example

from Table 2 into equation (70) produces To illustrate the application of the formulas derived
S2a 2 from the similarity laws, the frictional resistance of a

- 2D + D3 + flat plate in a non-Newtonian liquid is calculated from
results in pipes.

Friction Factor The example chosen is a liquid used in fracturing oper-
ations for oil wells which shows a lower friction factor

The friction factor f for pipe flow is defined as than untreated water [91: 0.18 percent aqueous solution

= (72) of a synthetic polymer with n = 0.66 and p = 2.0 X
1PtU2  10-1 lb-sec/sq ft. A fit of the pipe data gives

or \1/2_ F 2  4 logADI, 17.38 (76)

= (73) Comparison with equation (75) then yields

11



B1 + B3 - 2D, + DA 28.00 (77) Refuences
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